Is Matching the LNA Input for Γ_{OPT} Always Worth the Effort?

AN008

In receiver applications, optimizing for the very best in LNA noise figure (NF) performance is a logical step for ensuring that the radio can obtain the ultimate in receiver sensitivity. To that end, designers often embark on a quest to find that perfect LNA match which yields the lowest possible NF. One must be careful, however, to assess all of the tradeoffs involved with seeking such perfection; in many situations, the better approach involves making very slight sacrifices in NF performance in exchange for matching simplicity. Understanding these tradeoffs begins with thorough assessment of an LNA’s simulated noise circles.

Using Simulated Noise Circles to Assess an LNA’s Sensitivity to Matching

The NF impact of an LNA’s match can be observed by analyzing the noise circles associated with a device’s de-embedded S-parameters. The simplest way to create these circles is to import the noise-specific S-parameters into a simulation tool like Keysight’s ADS. (Refer to Keysight’s documentation which will provide additional guidance on these specific noise simulations. The following are two good places to start: General Overview and Noise Circle command line syntax.)

Using the notation taken from Keysight’s General Overview, we see that the noise factor can be mapped using the following expression:

$$F = F_{\text{MIN}} + \frac{4r_n |\Gamma_{\text{SRC}} - \Gamma_{\text{OPT}}|^2}{(1 - |\Gamma_{\text{SRC}}|^2)(1 + \Gamma_{\text{OPT}})^2}$$

Where $\Gamma_{\text{OPT}} = S_{\text{OPT}}$, and Γ_{SRC} is the reflection coefficient of the source. The remaining variables - r_n (the noise resistance), NF_{MIN} and S_{OPT} - are taken directly from the noisy two-port parameters that are provided as part of the de-embedded S-parameter set. Note that NF_{MIN} is defined as the minimum noise figure that the circuit can produce when the source has the optimum reflection coefficient S_{OPT}.

As NF is mapped as a function of the source impedance (as seen by the LNA), states of constant NF take the form of nearly-concentric circles on the Smith chart. Like ripples in a pond, these simulated noise circles map the degradation of NF as the source impedance moves away from the optimum center point (where the NF is the absolute lowest). Each ‘ring’ in the sequence of overlapping circles has a constant value, with each successive ring representing a constant, stepped increase in NF.

The example below will illustrate how these noise circles can be used to ascertain the best overall match for an LNA.
GRF2093 Noise Circle Analysis

The following analysis draws upon the de-embedded S-parameters for the GRF2093 – an ultra-low noise amplifier designed to operate within the 1GHz to 6GHz frequency range using band-specific tunes. For this example, we will be looking the ideal match for operating the device at 2332MHz (the center frequency for SDARS applications).

The plots in Figure 1 were taken directly from an ADS Noise Circle simulation. Recall from above that the NF of an LNA is at its absolute lowest value (NF_{MIN}) when the device’s input is presented with its optimal source reflection coefficient, S_{OPT}. The source impedance for this optimal point on the Smith chart is depicted in the graphic below as m3, with a simulated S_{OPT} = 0.326 \angle 116.594^\circ and a calculated value of Z_0^* (0.639 + j0.417) \Omega. The absolute lowest achievable NF_{MIN} is an extremely low 0.142 dB.

![GRF2093: Noise circles, NFmin and Sopt](image)

Figure 1. GRF2093 Simulated Noise Circles
Now that we know the optimal impedance that will yield the absolute lowest NF, the next question is whether it is even worth creating a match that drives the input to the S_{OPT} point. As with most engineering decisions, it all depends upon the tradeoffs being made in the design.

One drawback to consider is the overall impact that an ideal NF match will have on gain and return loss. Note that while presenting the impedance at M3 to the input of the LNA results in the lowest possible NF, this rarely results in near-optimal $S(1,1)$ and, for this reason, it does not result in the highest possible gain. The highest gain will occur when both $S(1,1)$ and $S(2,2)$ are matched with their conjugate impedances.

A second tradeoff to consider is the complexity of the match itself. Adding shunt and series components may allow us to arrive at the S_{OPT} point, but doing so may require additional board space and cost.

The critical step in making this tradeoff analysis is to first assess the NF impact of moving away from S_{OPT}. Refer again to the plot in Figure 1. Shown are two Noise Circles – a red circle yielding a constant NF of 0.2 dB, and a blue circle yielding 0.3 dB. As the noise circles show, the NF penalty from not being exactly at S_{OPT} is small. Notice that the 0.2 dB NF circle (red) appears to cross the 50Ω center of the Smith Chart and that the resulting NF from this 50Ω source impedance is only 0.06 dB higher than the NF$_{\text{MIN}}$ value of 0.14 dB! The net result is that a simple capacitor that is a low-loss RF short will result in near-optimal NF.

But maybe you’re thinking it’s still worthwhile to do some additional matching. Based on the position of S_{OPT}, it appears that a shunt inductance on the input would easily translate a 50Ω source impedance to a location very close to this point of lowest possible NF. The problem is that the potential for NF improvement is only 0.06 dB, and any improvement would be nullified by losses associated with the matching inductor. This is why we tend to keep our application schematics simple, emphasizing low-loss in the device input match to achieve near-optimal performance at the lowest possible cost.

Summary

Here’s the big takeaway: In the case of using modern pHEMT LNAs such as the GRF2093, matching to present S_{OPT} to the device input versus simply presenting 50 Ω yields little net NF benefit. If you were to tune for S_{OPT}, the resistive losses associated with the extra matching components would often nullify any NF improvement. This is because the NF of an LNA application circuit strongly depends on both the device NF and the resistive losses from the input-matching network.

For the vast majority of Guerrilla RF’s ultra-low noise amplifiers, minimal high-Q matching often results in a near optimal NF implementation. An additional bonus is that you end up with fewer external components and lower cost. The appropriate matching is often just a high-Q series DC blocking capacitor that is an RF short at the band of interest, and thus it essentially presents 50 Ω to the input of the LNA.

Regardless of your design task, the Guerrilla RF applications engineering team is ready to help. Our goal is to make your product successful.

Contact us at applications@guerrilla-rf.com or sales@guerrilla-rf.com!
Disclaimers

Information in this application note is specific to the Guerrilla RF, Inc. ("Guerrilla RF") product identified.

This application note, including the information contained in it, is provided by Guerrilla RF as a service to its sales team, sales representatives and distributors and may be used for informational purposes only. Guerrilla RF assumes no responsibility for errors or omissions within this note or the information contained herein. Information provided is believed to be accurate and reliable, however, no responsibility is assumed by Guerrilla RF for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. Guerrilla RF assumes no liability for any datasheet, datasheet information, materials, products, product information, or other information provided hereunder, including the sale, distribution, reproduction or use of Guerrilla RF products, information or materials.

No license, whether express, implied, by estoppel, by implication or otherwise is granted by this datasheet for any intellectual property of Guerrilla RF, or any third party, including without limitation, patents, patent rights, copyrights, trademarks and trade secrets. All rights are reserved by Guerrilla RF.

All information herein, products, product information, datasheets, and datasheet information are subject to change and availability without notice. Guerrilla RF reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice. Guerrilla RF may further change its datasheet, product information, documentation, products, services, specifications or product descriptions at any time, without notice. Guerrilla RF makes no commitment to update any materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

GUERRILLA RF INFORMATION, PRODUCTS, PRODUCT INFORMATION, APPLICATION NOTES, DATASHEETS AND DATASHEET INFORMATION ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. GUERRILLA RF DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. GUERRILLA RF SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are solely responsible for their use of Guerrilla RF products in the Customer's products and applications or in ways which deviate from Guerrilla RF's published specifications, either intentionally or as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Guerrilla RF assumes no liability or responsibility for applications assistance, customer product design, or damage to any equipment resulting from the use of Guerrilla RF products outside of stated published specifications or parameters.

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Reason for Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Release</td>
<td>September 1, 2020</td>
<td></td>
</tr>
</tbody>
</table>